15 research outputs found

    Spin echo small angle neutron scattering using a continuously pumped He-3 neutron polarisation analyser

    Get PDF
    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of 3He. We describe the performance of the analyser along with a study of the 3He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments

    Glassy phonon heralds a strain glass state in a shape memory alloy

    Get PDF
    Shape memory strain glasses are frustrated ferroelastic materials with glasslike slow relaxation an

    Lattice vibrations boost demagnetization entropy in a shape-memory alloy

    Get PDF
    Magnetocaloric (MC) materials present an avenue for chemical-free, solid state refrigeration through cooling via adiabatic demagnetization. We have used inelastic neutron scattering to measure the lattice dynamics in the MC material Ni45Co5Mn36.6In13.4. Upon heating across the Curie Temperature (TC), the material exhibits an anomalous increase in phonon entropy of 0.22 +/- 0.04 kB/atom, which is ten times larger than expected from conventional thermal expansion. This transition is accompanied by an abrupt softening of the transverse optic phonon. We present first-principle calculations showing a strong coupling between lattice distortions and magnetic excitations

    Intrinsic anharmonic localization in thermoelectric PbSe

    Get PDF
    Lead chalcogenides have exceptional thermoelectric properties and intriguing anharmonic lattice dynamics underlying their low thermal conductivities. An ideal material for thermoelectric efficiency is the phonon glass–electron crystal, which drives research on strategies to scatter or localize phonons while minimally disrupting electronic-transport. Anharmonicity can potentially do both, even in perfect crystals, and simulations suggest that PbSe is anharmonic enough to support intrinsic localized modes that halt transport. Here, we experimentally observe high-temperature localization in PbSe using neutron scattering but find that localization is not limited to isolated modes – zero group velocity develops for a significant section of the transverse optic phonon on heating above a transition in the anharmonic dynamics. Arrest of the optic phonon propagation coincides with unusual sharpening of the longitudinal acoustic mode due to a loss of phase space for scattering. Our study shows how nonlinear physics beyond conventional anharmonic perturbations can fundamentally alter vibrational transport properties

    Intrinsic anharmonic localization in thermoelectric PbSe

    Get PDF
    Lead chalcogenides have exceptional thermoelectric properties and intriguing anharmonic lattice dynamics underlying their low thermal conductivities. An ideal material for thermoelectric efficiency is the phonon glass–electron crystal, which drives research on strategies to scatter or localize phonons while minimally disrupting electronic-transport. Anharmonicity can potentially do both, even in perfect crystals, and simulations suggest that PbSe is anharmonic enough to support intrinsic localized modes that halt transport. Here, we experimentally observe high-temperature localization in PbSe using neutron scattering but find that localization is not limited to isolated modes – zero group velocity develops for a significant section of the transverse optic phonon on heating above a transition in the anharmonic dynamics. Arrest of the optic phonon propagation coincides with unusual sharpening of the longitudinal acoustic mode due to a loss of phase space for scattering. Our study shows how nonlinear physics beyond conventional anharmonic perturbations can fundamentally alter vibrational transport properties

    Neutron spin evolution through broadband current sheet spin flippers

    No full text
    Controlled manipulation of neutron spin is a critical tool for many neutron scattering techniques. We have constructed current-sheet, neutron spin flippers for use in Spin Echo Scattering Angle Measurement (SESAME) that comprise pairs of open-faced solenoids which introduce an abrupt field reversal at a shared boundary. The magnetic fields generated by the coils have been mapped and compared with both an analytical approximation and a numerical boundary integral calculation. The agreement is generally good, allowing the former method to be used for rapid calculations of the Larmor phase acquired by a neutron passing through the flipper. The evolution of the neutron spin through the current sheets inside the flipper is calculated for various geometries of the current-carrying conductors, including different wire shapes, arrangements, and common imperfections. The flipping efficiency is found to be sensitive to gaps between wires and between current sheets. SESAME requires flippers with high fields and flipping planes inclined to the neutron beam. To avoid substantial neutron depolarization, such flippers require an interdigitated arrangement of wires. © 2013, American Institute of Physics

    Optimization of a solid state polarizing bender for cold neutrons

    No full text
    We have designed a solid state bender to polarize cold neutrons for the Spin Echo Scattering Angle Measurement SESAME instrument at the Low Energy Neutron Source LENS at Indiana University. The design attempts to achieve high neutron polarization across a wide range of neutro nwavelengths and divergence angles by optimizing the supermirror coating materials.The transmission and polarizing efficiency of the bender were modeled using the VITESS software, then measured at both continuous wave and pulsed neutronsources. While the measured peak neutron transmission and polarization agree reasonably well with simulations, neither quantity has been successfully modeled for long wavelength neutrons.These results imply an insufficient understanding of the magnetic microstructure of the supermirror coatings use

    Dynamical theory calculations of spin-echo resolved grazing-incidence scattering from a diffraction grating

    No full text
    Neutrons scattered or reflected from a diffraction grating are subject to a periodic potential analogous to the potential experienced by electrons within a crystal. Hence, the wavefunction of the neutrons can be expanded in terms of Bloch waves and a dynamical theory can be applied to interpret the scattering phenomenon. In this paper, a dynamical theory is used to calculate the results of neutron spin-echo resolved grazing-incidence scattering (SERGIS) from a silicon diffraction grating with a rectangular profile. The calculations are compared with SERGIS measurements made on the same grating at two neutron sources: a pulsed source and a continuous wave source. In both cases, the spin-echo polarization, studied as a function of the spin-echo length, peaks at integer multiples of the grating period but there are some differences between the two sets of data. The dynamical theory explains the differences and gives a good account of both sets of results. © 2010, Wiley-Blackwell
    corecore